Skip to main content
Version: v0.13.0

Python API Reference

A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you have your RAGFlow API key ready for authentication.


API GROUPING

Dataset Management


Create dataset

RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
embedding_model: str = "BAAI/bge-zh-v1.5",
language: str = "English",
permission: str = "me",
chunk_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet

Creates a dataset.

Parameters

name: str, Required

The unique name of the dataset to create. It must adhere to the following requirements:

  • Permitted characters include:
    • English letters (a-z, A-Z)
    • Digits (0-9)
    • "_" (underscore)
  • Must begin with an English letter or underscore.
  • Maximum 65,535 characters.
  • Case-insensitive.

avatar: str

Base64 encoding of the avatar. Defaults to ""

description: str

A brief description of the dataset to create. Defaults to "".

language: str

The language setting of the dataset to create. Available options:

  • "English" (Default)
  • "Chinese"

permission

Specifies who can access the dataset to create. You can set it only to "me" for now.

chunk_method, str

The chunking method of the dataset to create. Available options:

  • "naive": General (default)
  • "manual: Manual
  • "qa": Q&A
  • "table": Table
  • "paper": Paper
  • "book": Book
  • "laws": Laws
  • "presentation": Presentation
  • "picture": Picture
  • "one": One
  • "knowledge_graph": Knowledge Graph
  • "email": Email

parser_config

The parser configuration of the dataset. A ParserConfig object's attributes vary based on the selected chunk_method:

  • chunk_method="naive":
    {"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}.
  • chunk_method="qa":
    {"raptor": {"user_raptor": False}}
  • chunk_method="manuel":
    {"raptor": {"user_raptor": False}}
  • chunk_method="table":
    None
  • chunk_method="paper":
    {"raptor": {"user_raptor": False}}
  • chunk_method="book":
    {"raptor": {"user_raptor": False}}
  • chunk_method="laws":
    {"raptor": {"user_raptor": False}}
  • chunk_method="picture":
    None
  • chunk_method="presentation":
    {"raptor": {"user_raptor": False}}
  • chunk_method="one":
    None
  • chunk_method="knowledge-graph":
    {"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}
  • chunk_method="email":
    None

Returns

  • Success: A dataset object.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")

Delete datasets

RAGFlow.delete_datasets(ids: list[str] = None)

Deletes datasets by ID.

Parameters

ids: list[str], Required

The IDs of the datasets to delete. Defaults to None. If it is not specified, all datasets will be deleted.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

rag_object.delete_datasets(ids=["id_1","id_2"])

List datasets

RAGFlow.list_datasets(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[DataSet]

Lists datasets.

Parameters

page: int

Specifies the page on which the datasets will be displayed. Defaults to 1.

page_size: int

The number of datasets on each page. Defaults to 1024.

orderby: str

The field by which datasets should be sorted. Available options:

  • "create_time" (default)
  • "update_time"

desc: bool

Indicates whether the retrieved datasets should be sorted in descending order. Defaults to True.

id: str

The ID of the dataset to retrieve. Defaults to None.

name: str

The name of the dataset to retrieve. Defaults to None.

Returns

  • Success: A list of DataSet objects.
  • Failure: Exception.

Examples

List all datasets

for dataset in rag_object.list_datasets():
print(dataset)

Retrieve a dataset by ID

dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])

Update dataset

DataSet.update(update_message: dict)

Updates configurations for the current dataset.

Parameters

update_message: dict[str, str|int], Required

A dictionary representing the attributes to update, with the following keys:

  • "name": str The revised name of the dataset.
  • "embedding_model": str The updated embedding model name.
    • Ensure that "chunk_count" is 0 before updating "embedding_model".
  • "chunk_method": str The chunking method for the dataset. Available options:
    • "naive": General
    • "manual: Manual
    • "qa": Q&A
    • "table": Table
    • "paper": Paper
    • "book": Book
    • "laws": Laws
    • "presentation": Presentation
    • "picture": Picture
    • "one": One
    • "knowledge_graph": Knowledge Graph

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})

API GROUPING

File Management within Dataset


Upload documents

DataSet.upload_documents(document_list: list[dict])

Uploads documents to the current dataset.

Parameters

document_list: list[dict], Required

A list of dictionaries representing the documents to upload, each containing the following keys:

  • "display_name": (Optional) The file name to display in the dataset.
  • "blob": (Optional) The binary content of the file to upload.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])

Update document

Document.update(update_message:dict)

Updates configurations for the current document.

Parameters

update_message: dict[str, str|dict[]], Required

A dictionary representing the attributes to update, with the following keys:

  • "display_name": str The name of the document to update.
  • "chunk_method": str The parsing method to apply to the document.
    • "naive": General
    • "manual: Manual
    • "qa": Q&A
    • "table": Table
    • "paper": Paper
    • "book": Book
    • "laws": Laws
    • "presentation": Presentation
    • "picture": Picture
    • "one": One
    • "knowledge_graph": Knowledge Graph
    • "email": Email
  • "parser_config": dict[str, Any] The parsing configuration for the document. Its attributes vary based on the selected "chunk_method":
    • "chunk_method"="naive":
      {"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}.
    • chunk_method="qa":
      {"raptor": {"user_raptor": False}}
    • chunk_method="manuel":
      {"raptor": {"user_raptor": False}}
    • chunk_method="table":
      None
    • chunk_method="paper":
      {"raptor": {"user_raptor": False}}
    • chunk_method="book":
      {"raptor": {"user_raptor": False}}
    • chunk_method="laws":
      {"raptor": {"user_raptor": False}}
    • chunk_method="presentation":
      {"raptor": {"user_raptor": False}}
    • chunk_method="picture":
      None
    • chunk_method="one":
      None
    • chunk_method="knowledge-graph":
      {"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}
    • chunk_method="email":
      None

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id='id')
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])

Download document

Document.download() -> bytes

Downloads the current document.

Returns

The downloaded document in bytes.

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)

List documents

Dataset.list_documents(id:str =None, keywords: str=None, offset: int=1, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> list[Document]

Lists documents in the current dataset.

Parameters

id: str

The ID of the document to retrieve. Defaults to None.

keywords: str

The keywords used to match document titles. Defaults to None.

offset: int

The starting index for the documents to retrieve. Typically used in conjunction with limit. Defaults to 0.

limit: int

The maximum number of documents to retrieve. Defaults to 1024.

orderby: str

The field by which documents should be sorted. Available options:

  • "create_time" (default)
  • "update_time"

desc: bool

Indicates whether the retrieved documents should be sorted in descending order. Defaults to True.

Returns

  • Success: A list of Document objects.
  • Failure: Exception.

A Document object contains the following attributes:

  • id: The document ID. Defaults to "".
  • name: The document name. Defaults to "".
  • thumbnail: The thumbnail image of the document. Defaults to None.
  • dataset_id: The dataset ID associated with the document. Defaults to None.
  • chunk_method The chunk method name. Defaults to "naive".
  • source_type: The source type of the document. Defaults to "local".
  • type: Type or category of the document. Defaults to "". Reserved for future use.
  • created_by: str The creator of the document. Defaults to "".
  • size: int The document size in bytes. Defaults to 0.
  • token_count: int The number of tokens in the document. Defaults to 0.
  • chunk_count: int The number of chunks in the document. Defaults to 0.
  • progress: float The current processing progress as a percentage. Defaults to 0.0.
  • progress_msg: str A message indicating the current progress status. Defaults to "".
  • process_begin_at: datetime The start time of document processing. Defaults to None.
  • process_duation: float Duration of the processing in seconds. Defaults to 0.0.
  • run: str The document's processing status:
    • "UNSTART" (default)
    • "RUNNING"
    • "CANCEL"
    • "DONE"
    • "FAIL"
  • status: str Reserved for future use.
  • parser_config: ParserConfig Configuration object for the parser. Its attributes vary based on the selected chunk_method:
    • chunk_method="naive":
      {"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}.
    • chunk_method="qa":
      {"raptor": {"user_raptor": False}}
    • chunk_method="manuel":
      {"raptor": {"user_raptor": False}}
    • chunk_method="table":
      None
    • chunk_method="paper":
      {"raptor": {"user_raptor": False}}
    • chunk_method="book":
      {"raptor": {"user_raptor": False}}
    • chunk_method="laws":
      {"raptor": {"user_raptor": False}}
    • chunk_method="presentation":
      {"raptor": {"user_raptor": False}}
    • chunk_method="picure":
      None
    • chunk_method="one":
      None
    • chunk_method="knowledge-graph":
      {"chunk_token_num":128,"delimiter": "\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}
    • chunk_method="email":
      None

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")

filename1 = "~/ragflow.txt"
blob = open(filename1 , "rb").read()
dataset.upload_documents([{"name":filename1,"blob":blob}])
for doc in dataset.list_documents(keywords="rag", offset=0, limit=12):
print(doc)

Delete documents

DataSet.delete_documents(ids: list[str] = None)

Deletes documents by ID.

Parameters

ids: list[list]

The IDs of the documents to delete. Defaults to None. If it is not specified, all documents in the dataset will be deleted.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.delete_documents(ids=["id_1","id_2"])

Parse documents

DataSet.async_parse_documents(document_ids:list[str]) -> None

Parses documents in the current dataset.

Parameters

document_ids: list[str], Required

The IDs of the documents to parse.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")

Stop parsing documents

DataSet.async_cancel_parse_documents(document_ids:list[str])-> None

Stops parsing specified documents.

Parameters

document_ids: list[str], Required

The IDs of the documents for which parsing should be stopped.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
dataset.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled.")

Add chunk

Document.add_chunk(content:str, important_keywords:list[str] = []) -> Chunk

Adds a chunk to the current document.

Parameters

content: str, Required

The text content of the chunk.

important_keywords: list[str]

The key terms or phrases to tag with the chunk.

Returns

  • Success: A Chunk object.
  • Failure: Exception.

A Chunk object contains the following attributes:

  • id: str: The chunk ID.
  • content: str The text content of the chunk.
  • important_keywords: list[str] A list of key terms or phrases tagged with the chunk.
  • create_time: str The time when the chunk was created (added to the document).
  • create_timestamp: float The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
  • dataset_id: str The ID of the associated dataset.
  • document_name: str The name of the associated document.
  • document_id: str The ID of the associated document.
  • available: bool The chunk's availability status in the dataset. Value options:
    • False: Unavailable
    • True: Available (default)

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")

List chunks

Document.list_chunks(keywords: str = None, offset: int = 1, limit: int = 1024, id : str = None) -> list[Chunk]

Lists chunks in the current document.

Parameters

keywords: str

The keywords used to match chunk content. Defaults to None

offset: int

The starting index for the chunks to retrieve. Defaults to 1.

limit: int

The maximum number of chunks to retrieve. Default: 1024

id: str

The ID of the chunk to retrieve. Default: None

Returns

  • Success: A list of Chunk objects.
  • Failure: Exception.

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets("123")
dataset = dataset[0]
dataset.async_parse_documents(["wdfxb5t547d"])
for chunk in doc.list_chunks(keywords="rag", offset=0, limit=12):
print(chunk)

Delete chunks

Document.delete_chunks(chunk_ids: list[str])

Deletes chunks by ID.

Parameters

chunk_ids: list[str]

The IDs of the chunks to delete. Defaults to None. If it is not specified, all chunks of the current document will be deleted.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])

Update chunk

Chunk.update(update_message: dict)

Updates content or configurations for the current chunk.

Parameters

update_message: dict[str, str|list[str]|int] Required

A dictionary representing the attributes to update, with the following keys:

  • "content": str The text content of the chunk.
  • "important_keywords": list[str] A list of key terms or phrases to tag with the chunk.
  • "available": bool The chunk's availability status in the dataset. Value options:
    • False: Unavailable
    • True: Available (default)

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})

Retrieve chunks

RAGFlow.retrieve(question:str="", dataset_ids:list[str]=None, document_ids=list[str]=None, offset:int=1, limit:int=1024, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]

Retrieves chunks from specified datasets.

Parameters

question: str Required

The user query or query keywords. Defaults to "".

dataset_ids: list[str], Required

The IDs of the datasets to search. Defaults to None. If you do not set this argument, ensure that you set document_ids.

document_ids: list[str]

The IDs of the documents to search. Defaults to None. You must ensure all selected documents use the same embedding model. Otherwise, an error will occur. If you do not set this argument, ensure that you set dataset_ids.

offset: int

The starting index for the documents to retrieve. Defaults to 1.

limit: int

The maximum number of chunks to retrieve. Defaults to 1024.

Similarity_threshold: float

The minimum similarity score. Defaults to 0.2.

vector_similarity_weight: float

The weight of vector cosine similarity. Defaults to 0.3. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.

top_k: int

The number of chunks engaged in vector cosine computaton. Defaults to 1024.

rerank_id: str

The ID of the rerank model. Defaults to None.

keyword: bool

Indicates whether to enable keyword-based matching:

  • True: Enable keyword-based matching.
  • False: Disable keyword-based matching (default).

highlight: bool

Specifies whether to enable highlighting of matched terms in the results:

  • True: Enable highlighting of matched terms.
  • False: Disable highlighting of matched terms (default).

Returns

  • Success: A list of Chunk objects representing the document chunks.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="ragflow")
dataset = dataset[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(dataset, name=name, blob=open(path, "rb").read())
doc = dataset.list_documents(name=name)
doc = doc[0]
dataset.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?",
dataset_ids=[dataset.id], document_ids=[doc.id],
offset=1, limit=30, similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)

API GROUPING

Chat Assistant Management


Create chat assistant

RAGFlow.create_chat(
name: str,
avatar: str = "",
dataset_ids: list[str] = [],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat

Creates a chat assistant.

Parameters

name: str, Required

The name of the chat assistant.

avatar: str

Base64 encoding of the avatar. Defaults to "".

dataset_ids: list[str]

The IDs of the associated datasets. Defaults to [""].

llm: Chat.LLM

The LLM settings for the chat assistant to create. Defaults to None. When the value is None, a dictionary with the following values will be generated as the default. An LLM object contains the following attributes:

  • model_name: str
    The chat model name. If it is None, the user's default chat model will be used.
  • temperature: float
    Controls the randomness of the model's predictions. A lower temperature increases the model's confidence in its responses; a higher temperature increases creativity and diversity. Defaults to 0.1.
  • top_p: float
    Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to 0.3
  • presence_penalty: float
    This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to 0.2.
  • frequency penalty: float
    Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to 0.7.
  • max_token: int
    The maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to 512.

prompt: Chat.Prompt

Instructions for the LLM to follow. A Prompt object contains the following attributes:

  • similarity_threshold: float RAGFlow uses a hybrid of weighted keyword similarity and vector cosine similarity during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is 0.2.
  • keywords_similarity_weight: float This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is 0.7.
  • top_n: int This argument specifies the number of top chunks with similarity scores above the similarity_threshold that are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is 8.
  • variables: list[dict[]] This argument lists the variables to use in the 'System' field of Chat Configurations. Note that:
    • knowledge is a reserved variable, which represents the retrieved chunks.
    • All the variables in 'System' should be curly bracketed.
    • The default value is [{"key": "knowledge", "optional": True}].
  • rerank_model: str If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to "".
  • empty_response: str If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank. Defaults to None.
  • opener: str The opening greeting for the user. Defaults to "Hi! I am your assistant, can I help you?".
  • show_quote: bool Indicates whether the source of text should be displayed. Defaults to True.
  • prompt: str The prompt content.

Returns

  • Success: A Chat object representing the chat assistant.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_ids = []
for dataset in datasets:
dataset_ids.append(dataset.id)
assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)

Update chat assistant

Chat.update(update_message: dict)

Updates configurations for the current chat assistant.

Parameters

update_message: dict[str, str|list[str]|dict[]], Required

A dictionary representing the attributes to update, with the following keys:

  • "name": str The revised name of the chat assistant.
  • "avatar": str Base64 encoding of the avatar. Defaults to ""
  • "dataset_ids": list[str] The datasets to update.
  • "llm": dict The LLM settings:
    • "model_name", str The chat model name.
    • "temperature", float Controls the randomness of the model's predictions.
    • "top_p", float Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.
    • "presence_penalty", float This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
    • "frequency penalty", float Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
    • "max_token", int The maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
  • "prompt" : Instructions for the LLM to follow.
    • "similarity_threshold": float RAGFlow uses a hybrid of weighted keyword similarity and vector cosine similarity during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is 0.2.
    • "keywords_similarity_weight": float This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is 0.7.
    • "top_n": int This argument specifies the number of top chunks with similarity scores above the similarity_threshold that are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is 8.
    • "variables": list[dict[]] This argument lists the variables to use in the 'System' field of Chat Configurations. Note that:
      • knowledge is a reserved variable, which represents the retrieved chunks.
      • All the variables in 'System' should be curly bracketed.
      • The default value is [{"key": "knowledge", "optional": True}].
    • "rerank_model": str If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to "".
    • "empty_response": str If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to None.
    • "opener": str The opening greeting for the user. Defaults to "Hi! I am your assistant, can I help you?".
    • "show_quote: bool Indicates whether the source of text should be displayed Defaults to True.
    • "prompt": str The prompt content.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_id = datasets[0].id
assistant = rag_object.create_chat("Miss R", dataset_ids=[dataset_id])
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})

Delete chat assistants

RAGFlow.delete_chats(ids: list[str] = None)

Deletes chat assistants by ID.

Parameters

ids: list[str]

The IDs of the chat assistants to delete. Defaults to None. If it is ot specified, all chat assistants in the system will be deleted.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag_object.delete_chats(ids=["id_1","id_2"])

List chat assistants

RAGFlow.list_chats(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Chat]

Lists chat assistants.

Parameters

page: int

Specifies the page on which the chat assistants will be displayed. Defaults to 1.

page_size: int

The number of chat assistants on each page. Defaults to 1024.

orderby: str

The attribute by which the results are sorted. Available options:

  • "create_time" (default)
  • "update_time"

desc: bool

Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to True.

id: str

The ID of the chat assistant to retrieve. Defaults to None.

name: str

The name of the chat assistant to retrieve. Defaults to None.

Returns

  • Success: A list of Chat objects.
  • Failure: Exception.

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag_object.list_chats():
print(assistant)

API GROUPING

Chat Session APIs


Create session

Chat.create_session(name: str = "New session") -> Session

Creates a chat session.

Parameters

name: str

The name of the chat session to create.

Returns

  • Success: A Session object containing the following attributes:
    • id: str The auto-generated unique identifier of the created session.
    • name: str The name of the created session.
    • message: list[Message] The messages of the created session assistant. Default: [{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
    • chat_id: str The ID of the associated chat assistant.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()

Update session

Session.update(update_message: dict)

Updates the current session.

Parameters

update_message: dict[str, Any], Required

A dictionary representing the attributes to update, with only one key:

  • "name": str The revised name of the session.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})

List sessions

Chat.list_sessions(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Session]

Lists sessions associated with the current chat assistant.

Parameters

page: int

Specifies the page on which the sessions will be displayed. Defaults to 1.

page_size: int

The number of sessions on each page. Defaults to 1024.

orderby: str

The field by which sessions should be sorted. Available options:

  • "create_time" (default)
  • "update_time"

desc: bool

Indicates whether the retrieved sessions should be sorted in descending order. Defaults to True.

id: str

The ID of the chat session to retrieve. Defaults to None.

name: str

The name of the chat session to retrieve. Defaults to None.

Returns

  • Success: A list of Session objects associated with the current chat assistant.
  • Failure: Exception.

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)

Delete sessions

Chat.delete_sessions(ids:list[str] = None)

Deletes sessions by ID.

Parameters

ids: list[str]

The IDs of the sessions to delete. Defaults to None. If it is not specified, all sessions associated with the current chat assistant will be deleted.

Returns

  • Success: No value is returned.
  • Failure: Exception

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])

Converse

Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]

Asks a question to start an AI-powered conversation.

Parameters

question: str Required

The question to start an AI-powered conversation.

stream: bool

Indicates whether to output responses in a streaming way:

  • True: Enable streaming.
  • False: Disable streaming (default).

Returns

  • A Message object containing the response to the question if stream is set to False
  • An iterator containing multiple message objects (iter[Message]) if stream is set to True

The following shows the attributes of a Message object:

id: str

The auto-generated message ID.

content: str

The content of the message. Defaults to "Hi! I am your assistant, can I help you?".

reference: list[Chunk]

A list of Chunk objects representing references to the message, each containing the following attributes:

  • id str
    The chunk ID.
  • content str
    The content of the chunk.
  • image_id str
    The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.
  • document_id str
    The ID of the referenced document.
  • document_name str
    The name of the referenced document.
  • position list[str]
    The location information of the chunk within the referenced document.
  • dataset_id str
    The ID of the dataset to which the referenced document belongs.
  • similarity float
    A composite similarity score of the chunk ranging from 0 to 1, with a higher value indicating greater similarity. It is the weighted sum of vector_similarity and term_similarity.
  • vector_similarity float
    A vector similarity score of the chunk ranging from 0 to 1, with a higher value indicating greater similarity between vector embeddings.
  • term_similarity float
    A keyword similarity score of the chunk ranging from 0 to 1, with a higher value indicating greater similarity between keywords.

Examples

from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()

print("\n==================== Miss R =====================\n")
print(assistant.get_prologue())

while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")

cont = ""
for ans in session.ask(question, stream=True):
print(answer.content[len(cont):], end='', flush=True)
cont = answer.content