Python API Reference
A complete reference for RAGFlow's Python APIs. Before proceeding, please ensure you have your RAGFlow API key ready for authentication.
Dataset Management
Create dataset
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
embedding_model: str = "BAAI/bge-zh-v1.5",
language: str = "English",
permission: str = "me",
chunk_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
Creates a dataset.
Parameters
name: str
, Required
The unique name of the dataset to create. It must adhere to the following requirements:
- Permitted characters include:
- English letters (a-z, A-Z)
- Digits (0-9)
- "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.
avatar: str
Base64 encoding of the avatar. Defaults to ""
description: str
A brief description of the dataset to create. Defaults to ""
.
language: str
The language setting of the dataset to create. Available options:
"English"
(default)"Chinese"
permission
Specifies who can access the dataset to create. Available options:
"me"
: (Default) Only you can manage the dataset."team"
: All team members can manage the dataset.
chunk_method, str
The chunking method of the dataset to create. Available options:
"naive"
: General (default)"manual
: Manual"qa"
: Q&A"table"
: Table"paper"
: Paper"book"
: Book"laws"
: Laws"presentation"
: Presentation"picture"
: Picture"one"
: One"knowledge_graph"
: Knowledge Graph
Ensure your LLM is properly configured on the Settings page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!"email"
: Email
parser_config
The parser configuration of the dataset. A ParserConfig
object's attributes vary based on the selected chunk_method
:
chunk_method
="naive"
:
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}
.chunk_method
="qa"
:
{"raptor": {"user_raptor": False}}
chunk_method
="manuel"
:
{"raptor": {"user_raptor": False}}
chunk_method
="table"
:
None
chunk_method
="paper"
:
{"raptor": {"user_raptor": False}}
chunk_method
="book"
:
{"raptor": {"user_raptor": False}}
chunk_method
="laws"
:
{"raptor": {"user_raptor": False}}
chunk_method
="picture"
:
None
chunk_method
="presentation"
:
{"raptor": {"user_raptor": False}}
chunk_method
="one"
:
None
chunk_method
="knowledge-graph"
:
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}
chunk_method
="email"
:
None
Returns
- Success: A
dataset
object. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
Delete datasets
RAGFlow.delete_datasets(ids: list[str] = None)
Deletes datasets by ID.
Parameters
ids: list[str]
, Required
The IDs of the datasets to delete. Defaults to None
. If it is not specified, all datasets will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag_object.delete_datasets(ids=["id_1","id_2"])
List datasets
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 30,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[DataSet]
Lists datasets.
Parameters
page: int
Specifies the page on which the datasets will be displayed. Defaults to 1
.
page_size: int
The number of datasets on each page. Defaults to 30
.
orderby: str
The field by which datasets should be sorted. Available options:
"create_time"
(default)"update_time"
desc: bool
Indicates whether the retrieved datasets should be sorted in descending order. Defaults to True
.
id: str
The ID of the dataset to retrieve. Defaults to None
.
name: str
The name of the dataset to retrieve. Defaults to None
.
Returns
- Success: A list of
DataSet
objects. - Failure:
Exception
.
Examples
List all datasets
for dataset in rag_object.list_datasets():
print(dataset)
Retrieve a dataset by ID
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
Update dataset
DataSet.update(update_message: dict)
Updates configurations for the current dataset.
Parameters
update_message: dict[str, str|int]
, Required
A dictionary representing the attributes to update, with the following keys:
"name"
:str
The revised name of the dataset."embedding_model"
:str
The updated embedding model name.- Ensure that
"chunk_count"
is0
before updating"embedding_model"
.
- Ensure that
"chunk_method"
:str
The chunking method for the dataset. Available options:"naive"
: General"manual
: Manual"qa"
: Q&A"table"
: Table"paper"
: Paper"book"
: Book"laws"
: Laws"presentation"
: Presentation"picture"
: Picture"one"
: One"email"
: Email"knowledge_graph"
: Knowledge Graph
Ensure your LLM is properly configured on the Settings page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
File Management within Dataset
Upload documents
DataSet.upload_documents(document_list: list[dict])
Uploads documents to the current dataset.
Parameters
document_list: list[dict]
, Required
A list of dictionaries representing the documents to upload, each containing the following keys:
"display_name"
: (Optional) The file name to display in the dataset."blob"
: (Optional) The binary content of the file to upload.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
Update document
Document.update(update_message:dict)
Updates configurations for the current document.
Parameters
update_message: dict[str, str|dict[]]
, Required
A dictionary representing the attributes to update, with the following keys:
"display_name"
:str
The name of the document to update."chunk_method"
:str
The parsing method to apply to the document."naive"
: General"manual
: Manual"qa"
: Q&A"table"
: Table"paper"
: Paper"book"
: Book"laws"
: Laws"presentation"
: Presentation"picture"
: Picture"one"
: One"knowledge_graph"
: Knowledge Graph
Ensure your LLM is properly configured on the Settings page before selecting this. Please also note that Knowledge Graph consumes a large number of Tokens!"email"
: Email
"parser_config"
:dict[str, Any]
The parsing configuration for the document. Its attributes vary based on the selected"chunk_method"
:"chunk_method"
="naive"
:
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}
.chunk_method
="qa"
:
{"raptor": {"user_raptor": False}}
chunk_method
="manuel"
:
{"raptor": {"user_raptor": False}}
chunk_method
="table"
:
None
chunk_method
="paper"
:
{"raptor": {"user_raptor": False}}
chunk_method
="book"
:
{"raptor": {"user_raptor": False}}
chunk_method
="laws"
:
{"raptor": {"user_raptor": False}}
chunk_method
="presentation"
:
{"raptor": {"user_raptor": False}}
chunk_method
="picture"
:
None
chunk_method
="one"
:
None
chunk_method
="knowledge-graph"
:
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}
chunk_method
="email"
:
None
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id='id')
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
Download document
Document.download() -> bytes
Downloads the current document.
Returns
The downloaded document in bytes.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
List documents
Dataset.list_documents(id:str =None, keywords: str=None, page: int=1, page_size:int = 30, order_by:str = "create_time", desc: bool = True) -> list[Document]
Lists documents in the current dataset.
Parameters
id: str
The ID of the document to retrieve. Defaults to None
.
keywords: str
The keywords used to match document titles. Defaults to None
.
page: int
Specifies the page on which the documents will be displayed. Defaults to 1
.
page_size: int
The maximum number of documents on each page. Defaults to 30
.
orderby: str
The field by which documents should be sorted. Available options:
"create_time"
(default)"update_time"
desc: bool
Indicates whether the retrieved documents should be sorted in descending order. Defaults to True
.
Returns
- Success: A list of
Document
objects. - Failure:
Exception
.
A Document
object contains the following attributes:
id
: The document ID. Defaults to""
.name
: The document name. Defaults to""
.thumbnail
: The thumbnail image of the document. Defaults toNone
.dataset_id
: The dataset ID associated with the document. Defaults toNone
.chunk_method
The chunk method name. Defaults to"naive"
.source_type
: The source type of the document. Defaults to"local"
.type
: Type or category of the document. Defaults to""
. Reserved for future use.created_by
:str
The creator of the document. Defaults to""
.size
:int
The document size in bytes. Defaults to0
.token_count
:int
The number of tokens in the document. Defaults to0
.chunk_count
:int
The number of chunks in the document. Defaults to0
.progress
:float
The current processing progress as a percentage. Defaults to0.0
.progress_msg
:str
A message indicating the current progress status. Defaults to""
.process_begin_at
:datetime
The start time of document processing. Defaults toNone
.process_duation
:float
Duration of the processing in seconds. Defaults to0.0
.run
:str
The document's processing status:"UNSTART"
(default)"RUNNING"
"CANCEL"
"DONE"
"FAIL"
status
:str
Reserved for future use.parser_config
:ParserConfig
Configuration object for the parser. Its attributes vary based on the selectedchunk_method
:chunk_method
="naive"
:
{"chunk_token_num":128,"delimiter":"\\n!?;。;!?","html4excel":False,"layout_recognize":True,"raptor":{"user_raptor":False}}
.chunk_method
="qa"
:
{"raptor": {"user_raptor": False}}
chunk_method
="manuel"
:
{"raptor": {"user_raptor": False}}
chunk_method
="table"
:
None
chunk_method
="paper"
:
{"raptor": {"user_raptor": False}}
chunk_method
="book"
:
{"raptor": {"user_raptor": False}}
chunk_method
="laws"
:
{"raptor": {"user_raptor": False}}
chunk_method
="presentation"
:
{"raptor": {"user_raptor": False}}
chunk_method
="picure"
:
None
chunk_method
="one"
:
None
chunk_method
="knowledge-graph"
:
{"chunk_token_num":128,"delimiter": "\\n!?;。;!?","entity_types":["organization","person","location","event","time"]}
chunk_method
="email"
:
None
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
blob = open(filename1 , "rb").read()
dataset.upload_documents([{"name":filename1,"blob":blob}])
for doc in dataset.list_documents(keywords="rag", page=0, page_size=12):
print(doc)
Delete documents
DataSet.delete_documents(ids: list[str] = None)
Deletes documents by ID.
Parameters
ids: list[list]
The IDs of the documents to delete. Defaults to None
. If it is not specified, all documents in the dataset will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.delete_documents(ids=["id_1","id_2"])
Parse documents
DataSet.async_parse_documents(document_ids:list[str]) -> None
Parses documents in the current dataset.
Parameters
document_ids: list[str]
, Required
The IDs of the documents to parse.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
Stop parsing documents
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
Stops parsing specified documents.
Parameters
document_ids: list[str]
, Required
The IDs of the documents for which parsing should be stopped.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'display_name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'display_name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'display_name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
dataset.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled.")
Add chunk
Document.add_chunk(content:str, important_keywords:list[str] = []) -> Chunk
Adds a chunk to the current document.
Parameters
content: str
, Required
The text content of the chunk.
important_keywords: list[str]
The key terms or phrases to tag with the chunk.
Returns
- Success: A
Chunk
object. - Failure:
Exception
.
A Chunk
object contains the following attributes:
id
:str
: The chunk ID.content
:str
The text content of the chunk.important_keywords
:list[str]
A list of key terms or phrases tagged with the chunk.create_time
:str
The time when the chunk was created (added to the document).create_timestamp
:float
The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.dataset_id
:str
The ID of the associated dataset.document_name
:str
The name of the associated document.document_id
:str
The ID of the associated document.available
:bool
The chunk's availability status in the dataset. Value options:False
: UnavailableTrue
: Available (default)
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
List chunks
Document.list_chunks(keywords: str = None, page: int = 1, page_size: int = 30, id : str = None) -> list[Chunk]
Lists chunks in the current document.
Parameters
keywords: str
The keywords used to match chunk content. Defaults to None
page: int
Specifies the page on which the chunks will be displayed. Defaults to 1
.
page_size: int
The maximum number of chunks on each page. Defaults to 30
.
id: str
The ID of the chunk to retrieve. Default: None
Returns
- Success: A list of
Chunk
objects. - Failure:
Exception
.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets("123")
dataset = dataset[0]
dataset.async_parse_documents(["wdfxb5t547d"])
for chunk in doc.list_chunks(keywords="rag", page=0, page_size=12):
print(chunk)
Delete chunks
Document.delete_chunks(chunk_ids: list[str])
Deletes chunks by ID.
Parameters
chunk_ids: list[str]
The IDs of the chunks to delete. Defaults to None
. If it is not specified, all chunks of the current document will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
Update chunk
Chunk.update(update_message: dict)
Updates content or configurations for the current chunk.
Parameters
update_message: dict[str, str|list[str]|int]
Required
A dictionary representing the attributes to update, with the following keys:
"content"
:str
The text content of the chunk."important_keywords"
:list[str]
A list of key terms or phrases to tag with the chunk."available"
:bool
The chunk's availability status in the dataset. Value options:False
: UnavailableTrue
: Available (default)
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})
Retrieve chunks
RAGFlow.retrieve(question:str="", dataset_ids:list[str]=None, document_ids=list[str]=None, page:int=1, page_size:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
Retrieves chunks from specified datasets.
Parameters
question: str
, Required
The user query or query keywords. Defaults to ""
.
dataset_ids: list[str]
, Required
The IDs of the datasets to search. Defaults to None
. If you do not set this argument, ensure that you set document_ids
.
document_ids: list[str]
The IDs of the documents to search. Defaults to None
. You must ensure all selected documents use the same embedding model. Otherwise, an error will occur. If you do not set this argument, ensure that you set dataset_ids
.
page: int
The starting index for the documents to retrieve. Defaults to 1
.
page_size: int
The maximum number of chunks to retrieve. Defaults to 30
.
Similarity_threshold: float
The minimum similarity score. Defaults to 0.2
.
vector_similarity_weight: float
The weight of vector cosine similarity. Defaults to 0.3
. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.
top_k: int
The number of chunks engaged in vector cosine computaton. Defaults to 1024
.
rerank_id: str
The ID of the rerank model. Defaults to None
.
keyword: bool
Indicates whether to enable keyword-based matching:
True
: Enable keyword-based matching.False
: Disable keyword-based matching (default).
highlight: bool
Specifies whether to enable highlighting of matched terms in the results:
True
: Enable highlighting of matched terms.False
: Disable highlighting of matched terms (default).
Returns
- Success: A list of
Chunk
objects representing the document chunks. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="ragflow")
dataset = dataset[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(dataset, name=name, blob=open(path, "rb").read())
doc = dataset.list_documents(name=name)
doc = doc[0]
dataset.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?",
dataset_ids=[dataset.id], document_ids=[doc.id],
page=1, page_size=30, similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
Chat Assistant Management
Create chat assistant
RAGFlow.create_chat(
name: str,
avatar: str = "",
dataset_ids: list[str] = [],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
Creates a chat assistant.
Parameters
name: str
, Required
The name of the chat assistant.
avatar: str
Base64 encoding of the avatar. Defaults to ""
.
dataset_ids: list[str]
The IDs of the associated datasets. Defaults to [""]
.
llm: Chat.LLM
The LLM settings for the chat assistant to create. Defaults to None
. When the value is None
, a dictionary with the following values will be generated as the default. An LLM
object contains the following attributes:
model_name
:str
The chat model name. If it isNone
, the user's default chat model will be used.temperature
:float
Controls the randomness of the model's predictions. A lower temperature increases the model's confidence in its responses; a higher temperature increases creativity and diversity. Defaults to0.1
.top_p
:float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to0.3
presence_penalty
:float
This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to0.2
.frequency penalty
:float
Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to0.7
.max_token
:int
The maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to512
.
prompt: Chat.Prompt
Instructions for the LLM to follow. A Prompt
object contains the following attributes:
similarity_threshold
:float
RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is0.2
.keywords_similarity_weight
:float
This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is0.7
.top_n
:int
This argument specifies the number of top chunks with similarity scores above thesimilarity_threshold
that are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is8
.variables
:list[dict[]]
This argument lists the variables to use in the 'System' field of Chat Configurations. Note that:knowledge
is a reserved variable, which represents the retrieved chunks.- All the variables in 'System' should be curly bracketed.
- The default value is
[{"key": "knowledge", "optional": True}]
.
rerank_model
:str
If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""
.empty_response
:str
If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank. Defaults toNone
.opener
:str
The opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"
.show_quote
:bool
Indicates whether the source of text should be displayed. Defaults toTrue
.prompt
:str
The prompt content.
Returns
- Success: A
Chat
object representing the chat assistant. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_ids = []
for dataset in datasets:
dataset_ids.append(dataset.id)
assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)
Update chat assistant
Chat.update(update_message: dict)
Updates configurations for the current chat assistant.
Parameters
update_message: dict[str, str|list[str]|dict[]]
, Required
A dictionary representing the attributes to update, with the following keys:
"name"
:str
The revised name of the chat assistant."avatar"
:str
Base64 encoding of the avatar. Defaults to""
"dataset_ids"
:list[str]
The datasets to update."llm"
:dict
The LLM settings:"model_name"
,str
The chat model name."temperature"
,float
Controls the randomness of the model's predictions."top_p"
,float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from."presence_penalty"
,float
This discourages the model from repeating the same information by penalizing words that have appeared in the conversation."frequency penalty"
,float
Similar to presence penalty, this reduces the model’s tendency to repeat the same words."max_token"
,int
The maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
"prompt"
: Instructions for the LLM to follow."similarity_threshold"
:float
RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted rerank score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is0.2
."keywords_similarity_weight"
:float
This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is0.7
."top_n"
:int
This argument specifies the number of top chunks with similarity scores above thesimilarity_threshold
that are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is8
."variables"
:list[dict[]]
This argument lists the variables to use in the 'System' field of Chat Configurations. Note that:knowledge
is a reserved variable, which represents the retrieved chunks.- All the variables in 'System' should be curly bracketed.
- The default value is
[{"key": "knowledge", "optional": True}]
.
"rerank_model"
:str
If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""
."empty_response"
:str
If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone
."opener"
:str
The opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"
."show_quote
:bool
Indicates whether the source of text should be displayed Defaults toTrue
."prompt"
:str
The prompt content.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_id = datasets[0].id
assistant = rag_object.create_chat("Miss R", dataset_ids=[dataset_id])
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
Delete chat assistants
RAGFlow.delete_chats(ids: list[str] = None)
Deletes chat assistants by ID.
Parameters
ids: list[str]
The IDs of the chat assistants to delete. Defaults to None
. If it is empty or not specified, all chat assistants in the system will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag_object.delete_chats(ids=["id_1","id_2"])
List chat assistants
RAGFlow.list_chats(
page: int = 1,
page_size: int = 30,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Chat]
Lists chat assistants.
Parameters
page: int
Specifies the page on which the chat assistants will be displayed. Defaults to 1
.
page_size: int
The number of chat assistants on each page. Defaults to 30
.
orderby: str
The attribute by which the results are sorted. Available options:
"create_time"
(default)"update_time"
desc: bool
Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to True
.
id: str
The ID of the chat assistant to retrieve. Defaults to None
.
name: str
The name of the chat assistant to retrieve. Defaults to None
.
Returns
- Success: A list of
Chat
objects. - Failure:
Exception
.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag_object.list_chats():
print(assistant)
Chat Session APIs
Create session with chat assistant
Chat.create_session(name: str = "New session") -> Session
Creates a session with the current chat assistant.
Parameters
name: str
The name of the chat session to create.
Returns
- Success: A
Session
object containing the following attributes:id
:str
The auto-generated unique identifier of the created session.name
:str
The name of the created session.message
:list[Message]
The messages of the created session assistant. Default:[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
chat_id
:str
The ID of the associated chat assistant.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
Update chat assistant's session
Session.update(update_message: dict)
Updates the current session of the current chat assistant.
Parameters
update_message: dict[str, Any]
, Required
A dictionary representing the attributes to update, with only one key:
"name"
:str
The revised name of the session.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
List chat assistant's sessions
Chat.list_sessions(
page: int = 1,
page_size: int = 30,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Session]
Lists sessions associated with the current chat assistant.
Parameters
page: int
Specifies the page on which the sessions will be displayed. Defaults to 1
.
page_size: int
The number of sessions on each page. Defaults to 30
.
orderby: str
The field by which sessions should be sorted. Available options:
"create_time"
(default)"update_time"
desc: bool
Indicates whether the retrieved sessions should be sorted in descending order. Defaults to True
.
id: str
The ID of the chat session to retrieve. Defaults to None
.
name: str
The name of the chat session to retrieve. Defaults to None
.
Returns
- Success: A list of
Session
objects associated with the current chat assistant. - Failure:
Exception
.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)
Delete chat assistant's sessions
Chat.delete_sessions(ids:list[str] = None)
Deletes sessions of the current chat assistant by ID.
Parameters
ids: list[str]
The IDs of the sessions to delete. Defaults to None
. If it is not specified, all sessions associated with the current chat assistant will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])
Converse with chat assistant
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
Asks a specified chat assistant a question to start an AI-powered conversation.
In streaming mode, not all responses include a reference, as this depends on the system's judgement.
Parameters
question: str
, Required
The question to start an AI-powered conversation.
stream: bool
Indicates whether to output responses in a streaming way:
True
: Enable streaming (default).False
: Disable streaming.
Returns
- A
Message
object containing the response to the question ifstream
is set toFalse
- An iterator containing multiple
message
objects (iter[Message]
) ifstream
is set toTrue
The following shows the attributes of a Message
object:
id: str
The auto-generated message ID.
content: str
The content of the message. Defaults to "Hi! I am your assistant, can I help you?"
.
reference: list[Chunk]
A list of Chunk
objects representing references to the message, each containing the following attributes:
id
str
The chunk ID.content
str
The content of the chunk.img_id
str
The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.document_id
str
The ID of the referenced document.document_name
str
The name of the referenced document.position
list[str]
The location information of the chunk within the referenced document.dataset_id
str
The ID of the dataset to which the referenced document belongs.similarity
float
A composite similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity. It is the weighted sum ofvector_similarity
andterm_similarity
.vector_similarity
float
A vector similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity between vector embeddings.term_similarity
float
A keyword similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity between keywords.
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
print("\n==================== Miss R =====================\n")
print("Hello. What can I do for you?")
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in session.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content
Create session with agent
Agent.create_session(id,rag) -> Session
Creates a session with the current agent.
Returns
- Success: A
Session
object containing the following attributes:id
:str
The auto-generated unique identifier of the created session.message
:list[Message]
The messages of the created session assistant. Default:[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
agent_id
:str
The ID of the associated agent assistant.
- Failure:
Exception
Examples
from ragflow_sdk import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
AGENT_ID = "AGENT_ID"
session = create_session(AGENT_ID,rag_object)
Converse with agent
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
Asks a specified agent a question to start an AI-powered conversation.
In streaming mode, not all responses include a reference, as this depends on the system's judgement.
Parameters
question: str
, Required
The question to start an AI-powered conversation.
stream: bool
Indicates whether to output responses in a streaming way:
True
: Enable streaming (default).False
: Disable streaming.
Returns
- A
Message
object containing the response to the question ifstream
is set toFalse
- An iterator containing multiple
message
objects (iter[Message]
) ifstream
is set toTrue
The following shows the attributes of a Message
object:
id: str
The auto-generated message ID.
content: str
The content of the message. Defaults to "Hi! I am your assistant, can I help you?"
.
reference: list[Chunk]
A list of Chunk
objects representing references to the message, each containing the following attributes:
id
str
The chunk ID.content
str
The content of the chunk.image_id
str
The ID of the snapshot of the chunk. Applicable only when the source of the chunk is an image, PPT, PPTX, or PDF file.document_id
str
The ID of the referenced document.document_name
str
The name of the referenced document.position
list[str]
The location information of the chunk within the referenced document.dataset_id
str
The ID of the dataset to which the referenced document belongs.similarity
float
A composite similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity. It is the weighted sum ofvector_similarity
andterm_similarity
.vector_similarity
float
A vector similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity between vector embeddings.term_similarity
float
A keyword similarity score of the chunk ranging from0
to1
, with a higher value indicating greater similarity between keywords.
Examples
from ragflow_sdk import RAGFlow,Agent
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
AGENT_id = "AGENT_ID"
session = Agent.create_session(AGENT_id,rag_object)
print("\n===== Miss R ====\n")
print("Hello. What can I do for you?")
while True:
question = input("\n===== User ====\n> ")
print("\n==== Miss R ====\n")
cont = ""
for ans in session.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content